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Abstract

In 2001, Della Pietra, Della Pietra, and Lafferty suggested a dual characterization of the

Bregman projection onto linear constraints, which has already been applied by Collins,

Schapire, and Singer to boosting algorithms and maximum likelihood logistic regression. The

proof provided by Della Pietra et al. is fairly complicated, and their statement features a

curious nonconvex component.

In this note, the Della Pietra et al. characterization is proved differently, using the powerful

framework of convex analysis. Assuming a standard constraint qualification, the proof

presented here is not only much shorter and cleaner, but it also reveals the strange nonconvex

component as a reformulation of a convex (dual) optimization problem. Furthermore, the

setting is extended from an affine subspace to a translated cone, and the convex function

inducing the Bregman distance is only required to be Legendre. Various remarks are made on

limitations and possible extensions.
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1. Introduction

Throughout this paper, we assume that

X is some Euclidean space RJ ; with inner product /x; yS ¼
X

j

xjyj ;
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and that (Definition 2.1)

f : X-� �N;þN� is a convex function of Legendre type:

The function f induces a so-called Bregman distance Df between two points xAX

and yA int dom f ; defined by

Df ðx; yÞ ¼ f ðxÞ � f ðyÞ �/rf ðyÞ; x � yS:

Suppose now that R is a closed convex set in X with R-int dom fa|; and let

y0Aint dom f :

The Bregman projection of y0 onto R is

P
f
Rðy0Þ ¼ arg min

rAR

Df ðr; y0Þ:

Because f is Legendre, the argmin is a single point belonging to the interior of the
domain of f (Fact 2.6).
We will assume throughout that R is a translated cone:

R ¼ K þ x0; for some closed convex cone K in X and x0Aint dom f :

This is flexible enough to cover Della Pietra et al.’s setting [10], where R is a set of
linear constraints.
The objective of this paper is to find equivalent, potentially more useful

descriptions of P
f
Rðy0Þ:

Our main result states that P
f
Rðy0Þ can also be found from a certain dual

projection. Let us outline the major steps in deriving this; details will be

provided in later sections. Consider the set T ¼ K" þrf ðy0Þ; where K" :¼
fxnAX n : inf/xn;KSX0g is the positive dual cone of K. Denote the classical

conjugate function of f by f n: The point rf ðx0Þ belongs to int dom f n; and it has a

unique projection onto T ; namely P
f n

T ðrf ðx0ÞÞ: Then P
f
Rðy0Þ and P

f n

T ðrf ðx0ÞÞ are
linked by the nice equation

ðrf ÞðPf
Rðy0ÞÞ ¼ P

f n

T ðrf ðx0ÞÞ: ð1Þ

Put differently,

rf ðPf
Rðy0ÞÞ ¼ arg min

znAT- int dom f n

Df nðzn;rf ðx0ÞÞ:

On the other hand, for arbitrary points xn; yn in int dom f n; one has an identity

connecting the Bregman distances induced by f and f n: Df nðxn; ynÞ ¼
Df ðrf nðynÞ;rf nðxnÞÞ: Altogether,

rf ðPf
Rðy0ÞÞ ¼ arg min

znAT-int dom f n

Df ðx0;rf nðznÞÞ;

equivalently,

P
f
Rðy0Þ ¼ arg min

sArf nðT-int dom f nÞ
Df ðx0; sÞ ¼ arg min

sAS

Df ðx0; sÞ; ð2Þ
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where

S ¼ rf nðT-int dom f nÞ:

Unless f is the energy x/1
2
jjxjj2; the set S is generally nonconvex. Eq. (2) is the

unusual ‘‘dual’’ characterization involving a nonconvex set suggested by Della Pietra
et al. for the case when R is an affine subspace!
In essence, this explains how the convex characterization (1) leads to the

nonconvex characterization (2).
This nonconvex characterization is crucial in the proofs of convergence results on

the algorithms discussed in [9,10].
The aim of this paper is to provide new and useful characterizations of the

projection P
f
Rðy0Þ; from within the powerful framework of convex analysis. We

extend Della Pietra et al.’s result from affine subspaces to translated cones, and also
discuss limitations and possible extensions of our approach.
The notation employed is standard; see [4,12], for instance.
The paper is organized as follows. Section 2 reviews known results that will be

useful later in the paper. The conical duality is derived in Section 3. In Section 4, we
specialize this duality to affine subspaces which allows some stronger results.

2. A tool box

2.1. Legendre function

The notion of a convex function of Legendre type, due to Rockafellar [12, Section
26], is key to our analysis.

Definition 2.1 (Legendre function). Suppose g is a lower semicontinuous convex
proper function from X to � �N;þN�: Then g is Legendre, if g is both essentially
smooth and essentially strictly convex; equivalently, g is differentiable and strictly

convex on int dom ga|; and limt-0þ/rgðx þ tðy � xÞ; y � xS ¼ �N; for all
xAbdryðdom gÞ; yAint dom g:

The class of Legendre function is rather large and encompasses many important
functions from convex optimization, see [1, Section 6]. We now give three examples,
including the perhaps two most important Legendre functions—the energy and the
negative entropy:

Example 2.2. Each of the following functions is Legendre:

* energy f ðxÞ ¼
P

j
1
2
jxj j2;

* negative entropy f ðxÞ ¼
P

j ðxj lnðxjÞ � xjÞ;
* Burg entropy f ðxÞ ¼ �

P
j lnðxjÞ:
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Fact 2.3. Suppose g : X-� �N;þN� is lower semicontinuous, convex, and proper.

Then g is Legendre if and only if its conjugate function

gn : X n-� �N;þN� : xn/ sup
xAX

ð/xn; xS� gðxÞÞ

is. Moreover, the gradient map

rg : int dom g-int dom gn

is a topological isomorphism with inverse mapping ðrgÞ�1 ¼ rgn:
In particular, f n is Legendre.

2.2. Bregman distance and projection

Definition 2.4 (Bregman distance). Suppose g : X-� �N;þN� is convex, lower

semicontinuous, and proper. Let g be differentiable on int dom ga|: Then the
Bregman distance is defined by

Dg :X � int dom g-½0;þN� : ðx; yÞ/gðxÞ � gðyÞ �/rgðyÞ; x � yS:

This distance-like measure was first employed by Bregman [5] in 1965. The notion
was coined and further developed by Censor and Lent [7]. Bregman distances lie at
the heart of numerous applications—see the many corresponding references in the
recent monographs [6,8].
The following result will come handy later.

Fact 2.5. Suppose g : X-� �N;þN� is Legendre. Then:

(i) ð8xAX Þð8yAint dom gÞ Dgðx; yÞ ¼ gðxÞ þ gnðrgðyÞÞ �/rgðyÞ;xS:

(ii) ð8xAint dom gÞð8yAint dom gÞ Dgðx; yÞ ¼ DgnðrgðyÞ;rgðxÞÞ:

Proof. (i) [1, Proposition 3.2(i)]. (ii) [1, Theorem 3.7(v)]. &

The Bregman distance between two points induces the distance between a point
and a set, which in turn prompts the notion of a projection:

Fact 2.6 (Legendre function and Bregman projection). Suppose g : X-� �N;þN�
is Legendre, C is a closed convex set in X with C-int dom ga| and yAint dom f :
Then the approximation problem

inf
xAC

Dgðx; yÞ

has a unique solution denoted P
g
CðyÞ and called the (Bregman) projection of y onto C.

Moreover, P
g
CðyÞ is contained in int dom g:

For further properties and examples, see [1,6,8].
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3. Duality for a translated cone

Recall the standing assumptions:

* f :X-� �N;þN� is Legendre;
* K is a closed convex cone in X ;
* fx0; y0gDint dom f ;
* R ¼ K þ x0;S ¼ rf nðT-int dom f nÞ; and T ¼ K" þrf ðy0Þ:

Theorem 3.1 (Duality for a translated cone). Each of the following conditions on a

point %xAX provides a characterization of the projection P
f
Rðy0Þ:

(i) %xAR-int dom f and suprAR /r � %x;rf ðy0Þ � rf ð %xÞSp0:
(ii) %xAR-int dom f and Df ðr; %xÞ þ Df ð %x; y0ÞpDf ðr; y0Þ; for every rAR:

(iii) rf ð %xÞ ¼ P
f n

T ðrf ðx0ÞÞ:
(iv) %x ¼ arg minsAS Df ðx0; sÞ:

Moreover,

Df ðx0; y0Þ ¼ minDf ðx0;SÞ þminDf ðR; y0Þ;

and both minima are uniquely attained at P
f
Rðy0Þ:

Proof. (i) This is [1, Proposition 3.16].
(ii) Is equivalent to (i), since

Df ðr; %xÞ þ Df ð %x; y0Þ � Df ðr; y0Þ ¼ /r � %x;rf ðy0Þ � rf ð %xÞS:

We now proceed to prove the remaining conclusions. Consider the primal
optimization problem

p :¼ inf
xAR

Dðx; y0Þ ¼ inf
xAX

ðDf ðx; y0Þ þ iKðx � x0ÞÞ: ð3Þ

Of course, we know (by Fact 2.6) that (3) has a unique solution

%x :¼ P
f
Rðy0ÞAint dom f : ð4Þ

Abbreviate jðxÞ :¼ Dðx; y0Þ and cðxÞ :¼ iKðx � x0Þ so that the primal problem (3)
becomes p ¼ infxAX ðjðxÞ þ cðxÞÞ: Using Fact 2.5(i), we readily verify that the
conjugate functions of j and c are

jnðxnÞ ¼ f nðrf ðy0Þ þ xnÞ � f nðrf ðy0ÞÞ and cnðxnÞ ¼ /x0;x
nSþ inKðxnÞ:

Since K is a cone, the conjugate function inK is simply the indicator function iK~ ;

where K~ :¼ fxnAXn: sup/xn;KSp0g ¼ �K" denotes the negative dual cone of
K :
In the sense of convex optimization, the problem dual to (3) is

d :¼ � inf
xnAXn

ðjnðxnÞ þ cnð�xnÞÞ: ð5Þ
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Using the definition of Df n and Fact 2.5(ii), we re-write (5) as

d ¼ � inf
xnAXn

ð f nðxn þrf ðy0ÞÞ � f nðrf ðy0ÞÞ þ iK~ð�xnÞ �/xn; x0SÞ

¼Df nðrf ðy0Þ;rf ðx0ÞÞ � inf
xnAK"

Df nðxn þrf ðy0Þ;rf ðx0ÞÞ

¼Df ðx0; y0Þ � inf
xnAK"

Df nðxn þrf ðy0Þ;rf ðx0ÞÞ: ð6Þ

The last infimum corresponds to finding the Bregman projection (with respect to f n)

of rf ðx0Þ onto K" þrf ðy0Þ ¼ T : Clearly, T is closed, convex, and

rf ðy0ÞAT-int dom f na|: By Fact 2.6, P
f n

T ðrf ðx0ÞÞ exists uniquely in int dom f n:
In particular, the dual problem (5) has a unique solution

%xn :¼ P
f n

T ðrf ðx0ÞÞ � rf ðy0Þ: ð7Þ

For the pair of optimization problems ((3) and (5)), one always has weak duality,
i.e., pXd: Since 0AK and x0Aint dom f—equivalently, x0A dom c-int dom j—we
actually have (see [4] or [12]) strong duality p ¼ d; equivalently, using (6),

Df ðx0; y0Þ ¼ min Df ðR; y0Þ þmin Df nðT ;rf ðx0ÞÞ: ð8Þ

Convex duality yields even more: in fact, the primal solution %x and the dual solution

%xn are related via the optimality conditions %xnA@jð %xÞ and � %xnA@cð %xÞ: Translating
this to the notation of the original problem, this becomes

%xn ¼ rf ð %xÞ � rf ðy0Þ and � %xnANRð %xÞ: ð9Þ

Combining (7) and the equation in (9) yields P
f n

T ðrf ðx0ÞÞ ¼ rf ð %xÞ: Hence item (iii)

is verified. But now (iii) and Fact 2.5(ii) yields

rf ð %xÞ ¼ P
f n

T ðrf ðx0ÞÞ ¼ arg min
znAT

Df nðzn;rf ðx0ÞÞ ¼ arg min
znAT

Df ðx0;rf nðznÞÞ:

Since rf is a topological isomorphism (Fact 2.3), we can ‘‘change variables’’ and re-
phrase this simply as

%x ¼ arg min
sAS

Df ðx0; sÞ:

This establishes item (iv) and also (use (8)!) the ‘‘Moreover’’ part. The entire theorem
is proven. &

Remark 3.2 (Formal duality). Consider Theorem 3.1 and its notation. If we identify

%x with the triple ð f ;K þ x0; y0Þ and agree upon that starring such a triple amounts to
computing rf ð %xÞ; then we can concisely rephrase Theorem 3.1(iii) as

ð f ;K þ x0; y0Þn ¼ ð f n;K" þrf ðy0Þ;rf ðx0ÞÞ:

Consequently, ð f ;K þ x0; y0Þnn ¼ ð f ;K þ x0; y0Þ:

Remark 3.3 (Classical orthogonal setting). Suppose f ¼ 1
2jj � jj

2 is the energy so that

the Bregman projections reduce to the classical orthogonal projections. Theorem
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3.1(iii) then states

PKþx0ðy0Þ ¼ PK"þy0ðx0Þ:

(Here and in Remark 4.2, Bregman projections without superscripts correspond to
orthogonal projections.)

Although this identity does not appear to be known explicitly, it can be pieced
together from known results on orthogonal projections: Frank Deutsch kindly
pointed out that the identity follows by combining Theorem 2.7(ii) and (iv), and
Theorem 5.6(2) from his recent monograph [11].

Remark 3.4 (Translated cone). Theorem 3.1 is formulated for the projection onto
R ¼ K þ x0; the translate of the cone K : Does our proof of Theorem 3.1 generalize
to a more general closed convex nonempty set K? The answer is negative: in order to

relate the dual problem to another projection, the function inK must be the indicator

function of some closed convex set, say K̃: As the conjugate of an indicator function,

inK ¼ iK̃ is sublinear. Thus K̃ is a closed convex cone. Since innK ¼ iK ; this implies that
K is a closed convex cone, namely the negative dual cone of K̃: (We note in passing
that items (i) and (ii), however, are valid for every closed convex nonempty set R

with R-int dom fa|:)

Remark 3.5 (Forward projection). Theorem 3.1(iv) appears quite surprising at first
glance, since neither is Df ðx0; �Þ generally a convex function nor is S a convex set.

However, we have revealed this apparently nonconvex problem as a reformulation of
a well-behaved convex problem.
In [2,3], we discuss Legendre functions for which the induced Bregman distance is

jointly convex and for which the new notion of a forward projection—where the first
argument of the Bregman distance is fixed and the second one is varied over a closed
convex set—can be well defined. While smaller than the class of Legendre functions,
this particular subclass does include both the energy and the negative entropy.

Remark 3.6 (Strong minimizer). By Theorem 3.1,

%x :¼ arg min
rAR

Df ðr; y0Þ ¼ arg min
sAS

Df ðx0; sÞ:

We now sketch a proof of the fact that %x is a strong minimizer for both minimization
problems.
We first establish that %x is a strong minimizer for minrAR Df ðr; y0Þ: So pick a

sequence ðrnÞ in R with Df ðrn; y0Þ-Df ð %x; y0Þ: We need to show that rn- %x: By

Bauschke and Borwein [1, Theorem 3.7 (iii)], Df ð�; y0Þ is coercive, hence ðrnÞ is

bounded. Let %r be a cluster point of ðrnÞ: Since Df is lower semicontinuous, we have

Df ð%r; y0ÞpDf ð %x; y0Þ: On the other hand, %rAR; since R is closed. By uniqueness of the

projection (Fact 2.6), %r ¼ %x: Thus, the entire sequence converges to %x:
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Next, we show that %x is a strong minimizer for min
sAS

Df ðx0; sÞ: Fix a sequence ðsnÞ in
S with Df ðx0; snÞ-Df ðx0; %xÞ: Using Fact 2.5(ii), this is equivalent to

Df nðrf ðsnÞ;rf ðx0ÞÞ-Df nðrf ð %xÞ;rf ðx0ÞÞ: By Theorem 3.1(iii) and the previous

case, rf ð %xÞ is a strong minimizer for the minimization problem

min
znAT

Df nðzn;rf ðx0ÞÞ: It follows thatrf ðsnÞ-rf ð %xÞ: By Fact 2.3, sn- %x; as required.

Remark 3.7 (R-S may not be a singleton). If X is the Euclidean plane and R is the

translation of the nonnegative orthant K ¼ K"; then R-S is never a singleton. On
the other hand, as we will see in Section 4, R-S is always a singleton provided that
R is an affine subspace.

4. Duality for an affine subspace

We continue to work with the standing assumptions listed at the beginning of
Section 3; in addition, we assume that

* K ¼ L; where L is some (closed) linear subspace of X :

Hence R ¼ L þ x0 is an affine subspace, which allows a refinement of items (i) and
(ii) of Theorem 3.1, as well as two new conditions:

Theorem 4.1 (Duality for an affine subspace). Each of the following conditions on a

point %xAX provides a characterization of the projection P
f
Rðy0Þ:

(i) %xAR-int dom f and rf ðy0Þ � rf ð %xÞAL>:
(ii) %xAR-int dom f and Df ðr; %xÞ þ Df ð %x; y0Þ ¼ Df ðr; y0Þ; for every rAR:

(iii) %xAR-S:
(iv) Df ðr; sÞ ¼ Df ðr; %xÞ þ Df ð %x; sÞ; for all rAR; sAS:

Proof.

(i) This follows from Theorem 3.1(i) since L is a linear subspace.
(ii) Analogously to the proof of Theorem 3.1(ii).

(iii) and (iv) require some preparation. Let %x :¼ P
f
Rðy0Þ: Pick sAS: On the one hand,

%xAR: On the other hand, rf ðsÞ � rf ð %xÞ ¼ ðrf ðsÞ � rf ðy0ÞÞ þ ðrf ðy0Þ � rf ð %xÞÞ:
The first difference lies in L> (by definition of S), and so does the second (by item

(i)). Hence rf ðsÞ � rf ð %xÞAL>: Altogether, using once again the characterization in
item (i),

ð8sASÞ P
f
RðsÞ ¼ %x ¼ P

f
Rðy0Þ: ð10Þ

Next, fix xAR-S: Since xAS; (10) results in P
f
RðxÞ ¼ %x: On the other hand, as xAR;

we have x ¼ P
f
RðxÞ: Altogether, x ¼ %x: Combining with Theorem 3.1(iv) yields

R-S ¼ f %xg: Thus item (iii) is proved.
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To tackle (iv), note first that the ‘‘Moreover’’ part of Theorem 3.1 yields

Df ðx0; y0Þ ¼ Df ðx0; %xÞ þ Df ð %x; y0Þ: ð11Þ

Because R is an affine subspace, we have R ¼ L þ x0 ¼ L þ r; for every rAR: Put
differently, in Eq. (11), we can and do replace x0 replaced by an arbitrary rAR to
obtain

ð8rARÞ Df ðr; y0Þ ¼ Df ðr; %xÞ þ Df ð %x; y0Þ: ð12Þ

Moreover, because of (10), we may interchange y0 with an arbitrary sAS in (12) and
conclude that

ð8rARÞð8sASÞ Df ðr; sÞ ¼ Df ðr; %xÞ þ Df ð %x; sÞ: ð13Þ

To complete the proof of item (iv), we only need to show that %x is the only point in X

satisfying (13). So suppose x̃ is such that ð8rARÞð8sASÞ Df ðr; sÞ ¼ Df ðr; x̃Þ þ
Df ðx̃; sÞ: Since %xAR-S (see item (iii)), we have 0 ¼ Df ð %x; %xÞ ¼ Df ð %x; x̃Þ þ Df ðx̃; %xÞ:
Hence x̃ ¼ %x; and the entire theorem is proved. &

Remark 4.2. One of the striking differences between Theorems 3.1 and 4.1 is that
R-S is always a singleton in the affine case. (See Remark 3.7 for a conical example
where R-S is not a singleton.) Moreover, if f is the energy, then %x ¼ PRðy0Þ can be
determined in closed form as follows: %x � x0AL 3PL>ð %x � x0Þ ¼ 03PL> %x ¼
PL>x0: Analogously, %x � y0AL>3 PL %x ¼ PLy0: Altogether, %x ¼ PL %x þ PL> %x ¼
PLy0 þ PL>ðx0Þ:

We now discuss Della Pietra et al.’s main result [10] in our setting. It is noteworthy
that item (iv) is crucial in their analysis of an algorithmic scheme.

Corollary 4.3 (Della Pietra et al.). Suppose Y :¼ RM and A : X-Y is linear. Assume

f is also co-finite, i.e., dom f n ¼ Xn: Let R̃ :¼ fxA dom f : Ax ¼ Ax0g and S̃ :¼
rf nðrf ðy0Þ þ ran AnÞ: Then each of the following conditions for a point %xAX

characterize P
f
Rðy0Þ:

(i) %xAR̃-S̃:
(ii) ð8rAR̃Þð8sAS̃Þ Df ðr; sÞ ¼ Df ðr; %xÞ þ Df ð %x; sÞ:
(iii) %x ¼ arg min

rAR̃

Df ðr; y0Þ:

(iv) %x ¼ arg min
sAS̃

Df ðx0; sÞ:

Proof. We let L :¼ ker A :¼ fxAX : Ax ¼ 0g and R :¼ L þ x0: Then R̃ ¼ R- dom f :

Fact 2.6 now shows that the unique point %x satisfying item (iii) is P
f
Rðy0Þ:

Next, L> ¼ ðker AÞ> ¼ ran An: Hence S̃ ¼ rf nðrf ðy0Þ þ ran AnÞ ¼ rf nðrf ðy0Þ þ
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L>Þ ¼ SD dom f : Item (i) now follows from Theorem 4.1(iii). Also, item (ii) is
implied by Theorem 4.1(iv). Finally, Theorem 3.1(iv) results in item (iv). &

Remark 4.4 (Impossibility to extend Df continuously). Della Pietra et al. originally

considered a more general situation than the present one—they did not require any
constraint qualification, i.e., neither x0 nor y0 is assumed to belong to the interior of
the domain of f : To tackle this case, they proposed to work with Df extended

continuously to dom f � dom f : Unfortunately, it is impossible to carry out this
approach because of the following result, applicable in particular to the negative
entropy:
If dom fkX ; then the lower semicontinuous hull of Df is never continuous on

cl dom f � cl dom f :

Proof (Sketch). Denote the lower semicontinuous hull of Df by %D: Note that
%Dðx; yÞX0; for all x; y in cl dom f : Fix %yAbdry dom f and let ðynÞ be an arbitrary
sequence in int dom f converging to %y: Now Df ðyn; ynÞ � 0; hence

%Dð %y; %yÞ ¼ 0: ð14Þ

On the other hand, fix xAint dom f and an arbitrary sequence ðxnÞ in int dom f

converging to x: Continuity of f on int dom f and the proof of [1, Theorem 3.8(i)]
show that Df ðxn; ynÞ-þN: Hence

ð8xAint dom f Þ %Dðx; %yÞ ¼ þN: ð15Þ

Altogether, (14) and (15) imply that %D is not continuous.
It is desirable to obtain duality results without assuming constraint qualifications,

as this occurs quite naturally in some applications. It appears, however, that neither
Della Pietra et al.’s nor the present approach extends to the general setting.

Finally, we point out that Della Pietra et al. considered the closure of S̃ in
Corollary 4.3(iv)—in our setting, this is not necessary: on the one hand, by Bauschke
and Borwein [1, Theorem 3.8(i)] and since x0Aint dom f ; we have Df ðx0; snÞ-þN

for every sequence ðsnÞ in int dom f converging to a boundary point of dom f : On

the other hand, ðclS̃Þ\S̃Dbdry dom f ; because S̃ ¼ rf nðrf ðy0Þ þ ran AnÞ ¼
ðrf Þ�1ðrf ðy0Þ þ ran AnÞ is closed in int dom f : Altogether, arg min

sAS̃

Df ðx0; sÞ ¼

arg min
sAclS̃

Df ðx0; sÞ:

We conclude by providing a concrete example of Remark 4.4.

Example 4.5 (Impossibility to extend Df continuously). Let X ¼ R and f be the

negative entropy given by

f ðxÞ ¼
x lnðxÞ � x if x40;

0 if x ¼ 0;

þN if xo0:

8><
>:

9>=
>;
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Then dom f ¼ ½0;þN½ is closed, and

Df ðx; yÞ ¼ x lnðxÞ � x lnðyÞ � x þ y

for ðx; yÞA dom Df ¼ ½0;þN½��0;þN½:
Now assume to the contrary it were possible to extend Df continuously.

For x40 and aX1; let yaðxÞ :¼ expð�1=xaÞ: Then for every aX1 and x40; we

have ðx; yaðxÞÞA�0;þN½2;

Df ðx; yaðxÞÞ ¼ x lnðxÞ þ x1�a � x þ yaðxÞ; ð16Þ

and

lim
x-0þ

ðx; yaðxÞÞ ¼ ð0; 0Þ: ð17Þ

By (16), limx-0þDf ðx; y1ðxÞÞ ¼ 1; while limx-0þ Df ðx; y2ðxÞÞ ¼ þN; consequently,
in view of (17), it is impossible to extend Df continuously at ð0; 0Þ: Hoping for a

separately continuous extension of Df is also fruitless: let D̃ : 0;þN½ ½2-½0;þN� be
such that eDD ¼ Df on 0;þN� ½2 and eDDð0; 0Þ ¼ 0: Fix x40: Since limy-0þDf ðx; yÞ ¼
þN; separate continuity results in eDDðx; 0Þ ¼ þN: Thus eDDð�; 0Þ cannot be
continuous at 0:
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