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Abstract

In 2001, Della Pietra, Della Pietra, and Lafferty suggested a dual characterization of the
Bregman projection onto linear constraints, which has already been applied by Collins,
Schapire, and Singer to boosting algorithms and maximum likelihood logistic regression. The
proof provided by Della Pietra et al. is fairly complicated, and their statement features a
curious nonconvex component.

In this note, the Della Pietra et al. characterization is proved differently, using the powerful
framework of convex analysis. Assuming a standard constraint qualification, the proof
presented here is not only much shorter and cleaner, but it also reveals the strange nonconvex
component as a reformulation of a convex (dual) optimization problem. Furthermore, the
setting is extended from an affine subspace to a translated cone, and the convex function
inducing the Bregman distance is only required to be Legendre. Various remarks are made on
limitations and possible extensions.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Throughout this paper, we assume that

X is some Euclidean space R’, with inner product {x,y)» = Z Xjyj,
J
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and that (Definition 2.1)
f:X—>]— c0,+] is a convex function of Legendre type.

The function f* induces a so-called Bregman distance Dy between two points xe X
and ye intdom f, defined by

Dy(x,y) =1 (x) =f(y) = <Vf (), x =y
Suppose now that R is a closed convex set in X with Rnintdom f#0, and let

yoeintdom f.
The Bregman projection of y, onto R is

Ply(vo) = argmin Dy (r, yo).
reR

Because f is Legendre, the argmin is a single point belonging to the interior of the
domain of f (Fact 2.6).
We will assume throughout that R is a translated cone:

R = K + xq, for some closed convex cone K in X and xyeintdom f.

This is flexible enough to cover Della Pietra et al.’s setting [10], where R is a set of
linear constraints.

The objective of this paper is to find equivalent, potentially more useful
descriptions of P/R(y()).

Our main result states that sz(yo) can also be found from a certain dual
projection. Let us outline the major steps in deriving this; details will be
provided in later sections. Consider the set 7 = K® + Vf(y), where K@ ==
{x*eX*: inf{x* K) >0} is the positive dual cone of K. Denote the classical
conjugate function of /" by f*. The point Vf (xy) belongs to int dom f*, and it has a
unique projection onto 7', namely P/;(Vf(xo)). Then P’;(yo) and P/;(Vf(xo)) are
linked by the nice equation

(Vf)(Pi(30)) = P (V/ (x0))- (1)
Put differently,
Vf(P’;(yo)) = argmin  Dp=(z*,Vf(x))).

z*eTn int dom f*

On the other hand, for arbitrary points x*,y* in intdom f*, one has an identity
connecting the Bregman distances induced by f and f*: Dp(x*y*) =
Dy (Vf*(%), V*(x*)). Altogether,

Vf(Pr(y0)) = argmin  Dy(xo, V/*(=*));

z*e T nint dom f*
equivalently,

P’;(yo) = arg min Dy(x,s) = argmin Dr(xo, s), (2)
se Vf*(T nint dom f*) ses
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where

S = Vf*(T nint dom f*).

Unless f is the energy x|—>%|\x||2, the set S is generally nonconvex. Eq. (2) is the
unusual “dual” characterization involving a nonconvex set suggested by Della Pietra
et al. for the case when R is an affine subspace!

In essence, this explains how the convex characterization (1) leads to the
nonconvex characterization (2).

This nonconvex characterization is crucial in the proofs of convergence results on
the algorithms discussed in [9,10].

The aim of this paper is to provide new and useful characterizations of the
projection ch(yoﬁ from within the powerful framework of convex analysis. We
extend Della Pietra et al.’s result from affine subspaces to translated cones, and also
discuss limitations and possible extensions of our approach.

The notation employed is standard; see [4,12], for instance.

The paper is organized as follows. Section 2 reviews known results that will be
useful later in the paper. The conical duality is derived in Section 3. In Section 4, we
specialize this duality to affine subspaces which allows some stronger results.

2. A tool box
2.1. Legendre function

The notion of a convex function of Legendre type, due to Rockafellar [12, Section
26], is key to our analysis.

Definition 2.1 (Legendre function). Suppose ¢ is a lower semicontinuous convex
proper function from X to | — o0, 4c0]. Then g is Legendre, if ¢ is both essentially
smooth and essentially strictly convex; equivalently, ¢ is differentiable and strictly
convex on intdomg#0; and lim, ¢ {Vg(x +¢(y —x),y —x) = —o0, for all
xebdry(domg), yeintdomg.

The class of Legendre function is rather large and encompasses many important
functions from convex optimization, see [1, Section 6]. We now give three examples,
including the perhaps two most important Legendre functions—the energy and the
negative entropy:

Example 2.2. Each of the following functions is Legendre:

o energy f(x) = >3 31 I
® negative entropy f(x) = 3_; (x;In(x;) — x;);
® Burg entropy f(x) = =37, In(x;).
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Fact 2.3. Suppose g: X =] — oo, +o0] is lower semicontinuous, convex, and proper.
Then g is Legendre if and only if its conjugate function

g*: X* =] — o0, +o] 1 ¥ sup ((x*,x) —g(x))
xeX

is. Moreover, the gradient map
Vg : intdom g—int dom g*

is a topological isomorphism with inverse mapping (Vg)7l = Vyg*.
In particular, {* is Legendre.

2.2. Bregman distance and projection

Definition 2.4 (Bregman distance). Suppose g: X —] — o0, 40| is convex, lower
semicontinuous, and proper. Let g be differentiable on intdom g#@. Then the
Bregman distance is defined by

Dy: X xintdom g—[0,+o0]: (x,»)—>g(x) —g(y) — {Vg(¥), x —y).

This distance-like measure was first employed by Bregman [5] in 1965. The notion
was coined and further developed by Censor and Lent [7]. Bregman distances lie at
the heart of numerous applications—see the many corresponding references in the
recent monographs [6,8].

The following result will come handy later.

Fact 2.5. Suppose g: X -] — o0, + 0] is Legendre. Then:
(i) (VxeX)(Vyeintdom g) Dy(x,y) = g(x) +¢*(Vg(»)) — <Vg(y), x>
(i) (Vxeintdom g)(Vyeintdomg) Dy(x,y) = Dp(Vg(y), Vg(x)).

Proof. (i) [1, Proposition 3.2(1)]. (ii) [1, Theorem 3.7(v)]. O

The Bregman distance between two points induces the distance between a point
and a set, which in turn prompts the notion of a projection:

Fact 2.6 (Legendre function and Bregman projection). Suppose g: X —] — o0, + 0]
is Legendre, C is a closed convex set in X with C~intdom g#0 and yeintdom f.
Then the approximation problem

inf Dy(x,y)
xeC

has a unique solution denoted P(.(y) and called the (Bregman) projection of y onto C.
Moreover, P%(y) is contained in int dom g.

For further properties and examples, see [1,6,8].
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3. Duality for a translated cone

Recall the standing assumptions:

® f:X—]|— o0,+00]is Legendre;

® K is a closed convex cone in X;

® {x,y0}<Sintdomf’;

® R=K+x0,S=V/*Tnintdomf*), and T = K® + Vf ().

Theorem 3.1 (Duality for a translated cone). Each of the following conditions on a
point Xxe X provides a characterization of the projection P’;(,(yg):

(i) xeRnintdomf and sup,. g <r — X,Vf(») — Vf (%)) <0.
(i) xeRnintdomf and Ds(r,X) + Dy(X,y0) <Dy (r,»0), for every reR.
() Vf (x) = P} (Vf (x0))-
(iv) X = argming.g Dr(xo,s).
Moreover,
Df(X(),yo) = mian(X(), S) + IIliIlDf(R,y())7
and both minima are uniquely attained at P’;(yo).
Proof. (i) This is [1, Proposition 3.16].
(i) Is equivalent to (i), since
Df(l’, )_C) + Df()_C,yo) - Df(”a)’o) =<{r—x%, vf(yo) - Vf()_C)>
We now proceed to prove the remaining conclusions. Consider the primal
optimization problem
p = inf D(x,y0) = inf (Ds(x,y0) + 1k (x — X0)). (3)
xXeR xeX
Of course, we know (by Fact 2.6) that (3) has a unique solution
X = P’;(yo)eint domf. 4)

Abbreviate ¢(x) := D(x, o) and Y(x) := ix(x — xp) so that the primal problem (3)
becomes p = infcx(@(x) + ¢¥(x)). Using Fact 2.5(i), we readily verify that the
conjugate functions of ¢ and y are

@*(x*) = f*(Vf (o) +x%) = f*(Vf (10)) and  Y*(x*) = (xo, x> + 1 (x).

Since K is a cone, the conjugate function 1% is simply the indicator function 1o,
where K© = {x*e X*: sup{x* K)» <0} = —K9 denotes the negative dual cone of
K.

In the sense of convex optimization, the problem dual to (3) is

di=— inf (¢*(x*) +Y*(—x*)). (5)
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Using the definition of Dy and Fact 2.5(ii), we re-write (5) as
d=— inf (f*(* 4+ Vf(0) = /(9 00)) + 1o (=) = (3,50 ))
= D(V/ (0), Vf (x0) = inf | Dys(x* + V1 (30), ¥ (x0))
= Dy(xo,30) = _inf Dps(x* + Vf (30), ¥ (x0)) (©)

The last infimum corresponds to finding the Bregman projection (with respect to /™)
of Vf(xg) onto K® +Vf(y)=T. Clearly, T is closed, convex, and

Vf(»o)e T nintdom f*=(. By Fact 2.6, P’;(Vf(xo)) exists uniquely in int dom f*.
In particular, the dual problem (5) has a unique solution

X* = P (Vf (x0)) — Vf (n0). (7)

For the pair of optimization problems ((3) and (5)), one always has weak duality,
i.e., p=d. Since 0e K and xyeint dom f—equivalently, xp € dom y nint dom p—we
actually have (see [4] or [12]) strong duality p = d; equivalently, using (6),

Df(Xo,y()) = min Df(R,yo) + min Df*(T, Vf(xo)) (8)
Convex duality yields even more: in fact, the primal solution ¥ and the dual solution

x* are related via the optimality conditions ¥* € 0¢p (%) and —x* € Oy (X). Translating
this to the notation of the original problem, this becomes

*=Vf(x)—Vf(») and —x*eNg(x%). 9)

Combining (7) and the equation in (9) yields P/;(Vf(xo)) = Vf(x). Hence item (iii)
is verified. But now (iii) and Fact 2.5(ii) yields
Vf (%) = Pl (Vf(x0)) = argmin Dys(z*, Vf (x9)) = argmin Dy (xo, V/*(z*)).
e z*eT
Since Vf is a topological isomorphism (Fact 2.3), we can ““‘change variables” and re-
phrase this simply as

X = argmin Dy (xo, 5).
seS

This establishes item (iv) and also (use (8)!) the ““Moreover” part. The entire theorem
is proven. [

Remark 3.2 (Formal duality). Consider Theorem 3.1 and its notation. If we identify
x with the triple (f, K + xo, yo) and agree upon that starring such a triple amounts to
computing Vf(X), then we can concisely rephrase Theorem 3.1(iii) as

(f7K+x05y0)* = (f*,K® + vf(yo)avf(xo))
Consequently, (f, K + xo,0)** = (f, K + X0, 0)-

Remark 3.3 (Classical orthogonal setting). Suppose f = 1|| - ||* is the energy so that
the Bregman projections reduce to the classical orthogonal projections. Theorem
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3.1(iii) then states
Pk 3y (90) = Pro 1y, (%0).

(Here and in Remark 4.2, Bregman projections without superscripts correspond to
orthogonal projections.)

Although this identity does not appear to be known explicitly, it can be pieced
together from known results on orthogonal projections: Frank Deutsch kindly
pointed out that the identity follows by combining Theorem 2.7(ii) and (iv), and
Theorem 5.6(2) from his recent monograph [11].

Remark 3.4 (Translated cone). Theorem 3.1 is formulated for the projection onto
R = K + Xy, the translate of the cone K. Does our proof of Theorem 3.1 generalize
to a more general closed convex nonempty set K? The answer is negative: in order to
relate the dual problem to another projection, the function 1% must be the indicator
function of some closed convex set, say K. As the conjugate of an indicator function,
1% = 15 is sublinear. Thus K is a closed convex cone. Since 1% = 1k, this implies that
K is a closed convex cone, namely the negative dual cone of K. (We note in passing
that items (i) and (ii), however, are valid for every closed convex nonempty set R
with Rnint dom f #0.)

Remark 3.5 (Forward projection). Theorem 3.1(iv) appears quite surprising at first
glance, since neither is Dy(xo,-) generally a convex function nor is S a convex set.
However, we have revealed this apparently nonconvex problem as a reformulation of
a well-behaved convex problem.

In [2,3], we discuss Legendre functions for which the induced Bregman distance is
Jjointly convex and for which the new notion of a forward projection—where the first
argument of the Bregman distance is fixed and the second one is varied over a closed
convex set—can be well defined. While smaller than the class of Legendre functions,
this particular subclass does include both the energy and the negative entropy.

Remark 3.6 (Strong minimizer). By Theorem 3.1,

X =argmin Dy(r,y¢) = argmin Dy (xo,s).
reR ses

We now sketch a proof of the fact that X is a strong minimizer for both minimization
problems.

We first establish that X is a strong minimizer for min,cg Dr(r, o). So pick a
sequence (r,) in R with Dy(ry,y0) = Dr(X,»0). We need to show that r,—X. By
Bauschke and Borwein [1, Theorem 3.7 (iii)], Dy(-,y0) is coercive, hence (r,) is
bounded. Let 7 be a cluster point of (r,). Since Dy is lower semicontinuous, we have
Dy(7,y0) <Ds(X,»0). On the other hand, 7e R, since R is closed. By uniqueness of the
projection (Fact 2.6), 7 = X. Thus, the entire sequence converges to X.
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Next, we show that % is a strong minimizer for mig Dy(xy, s). Fix a sequence (s,) in
Se
S with  Ds(xo,8,) = Dr(x0,%). Using Fact 2.5(ii), this is equivalent to
Ds«(NVf(s4),Vf(x0)) = D« (Vf (%), Vf(x0)). By Theorem 3.1(iii) and the previous
case, Vf(X) is a strong minimizer for the minimization problem
mir% Dy«(2*,Vf (x0)). It follows that Vf'(s,) - Vf(X). By Fact 2.3, 5, > X, as required.
*e

Remark 3.7 (RN S may not be a singleton). If X is the Euclidean plane and R is the
translation of the nonnegative orthant K = K©®, then RN S is never a singleton. On
the other hand, as we will see in Section 4, RN .S is always a singleton provided that
R is an affine subspace.

4. Duality for an affine subspace

We continue to work with the standing assumptions listed at the beginning of
Section 3; in addition, we assume that

® K =L, where L is some (closed) linear subspace of X.

Hence R = L + xy is an affine subspace, which allows a refinement of items (i) and
(i1) of Theorem 3.1, as well as two new conditions:

Theorem 4.1 (Duality for an affine subspace). Each of the following conditions on a
point Xe X provides a characterization of the projection P’;Q(yg):
() xe Rnintdomy and Vf(y¢) — Vf(x)eL*.
(i) XeRnintdomf and Ds(r,X) + Dr(X,y0) = Ds(r, y0), for every reR.
(iii)) Xe RN S.
(iv) Dy(r,s) = Dy(r,X) + Dy(X,s), for all re R, seS.

Proof.

(1) This follows from Theorem 3.1(i) since L is a linear subspace.
(i1)) Analogously to the proof of Theorem 3.1(ii).

(iii) and (iv) require some preparation. Let ¥ == P;'( (yo). Pick s€ S. On the one hand,
xeR. On the other hand, Vf(s) — V/(x) = (Vf(s) — Vf (1)) + (Vf () — VS (X)).
The first difference lies in L' (by definition of S), and so does the second (by item
(i)). Hence Vf'(s) — Vf(x)e L*. Altogether, using once again the characterization in
item (i),

(VseS)  Pi(s) = %= Pr(y). (10)

Next, fix xe RN S. Since xe S, (10) results in P;(x) = X. On the other hand, as xe R,

we have x:P/;z(x). Altogether, x = Xx. Combining with Theorem 3.1(iv) yields
RN S = {x}. Thus item (iii) is proved.
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To tackle (iv), note first that the “Moreover” part of Theorem 3.1 yields

Dy(x0,y0) = Dy(x0, X) + Dy (%, yo). (11)

Because R is an affine subspace, we have R = L + xy = L + r, for every re R. Put
differently, in Eq. (11), we can and do replace x; replaced by an arbitrary re R to
obtain

(VreR) Dys(r,yo) = Ds(r, %) + Ds(%,10)- (12)

Moreover, because of (10), we may interchange yy with an arbitrary s€.S in (12) and
conclude that

(VreR)(VseS) Dy(r,s) = Ds(r,X) + Ds(%,s). (13)

To complete the proof of item (iv), we only need to show that X is the only point in X
satisfying (13). So suppose X is such that (VreR)(VseS) Dy(r,s) = Ds(r,X) +
Dy(X,s). Since xe RN S (see item (iii)), we have 0 = Dy (X, %) = Dy (%, X) + Ds(X, X).
Hence X = X, and the entire theorem is proved. [l

Remark 4.2. One of the striking differences between Theorems 3.1 and 4.1 is that
RN S is always a singleton in the affine case. (See Remark 3.7 for a conical example
where RN S is not a singleton.) Moreover, if f is the energy, then X = Pg(y¢) can be
determined in closed form as follows: ¥ —xpel < P;i (X —x9) =0<=P.1X=
P, xy. Analogously, X —ypeL' < P;% = P;y,. Altogether, ¥ = P;X+ P;. % =
Pryo+ Pri(xo).

We now discuss Della Pietra et al.’s main result [10] in our setting. It is noteworthy
that item (iv) is crucial in their analysis of an algorithmic scheme.

Corollary 4.3 (Della Pietra et al.). Suppose Y = R™ and A: X — Y is linear. Assume
1 is also co-finite, ie., domf* = X*. Let R:={xe domf: Ax = Axy} and S =
VI*(Vf(») +ran A*). Then each of the following conditions for a point xeX
characterize P’;(yo):

(i) xeRnS.
(i) (vreR)(vseS) Dy(r.s) = Dy(r,%) + Dy(%,s).
(ili) X = argmin Ds(r, o).
reR
(iv) X = argmin Dr(xo,s).
seS

Proof. Welet L == ker 4 = {xeX: Ax =0} and R := L 4 x;. Then R = Rn dom f.
Fact 2.6 now shows that the unique point X satisfying item (iii) is P/;e(yo).
Next, L1 = (ker A)" = ran 4*. Hence S = Vf*(Vf (yo) + ran A*) = Vf*(Vf (o) +
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LY) = Sc domyf. Item (i) now follows from Theorem 4.1(iii). Also, item (ii) is
implied by Theorem 4.1(iv). Finally, Theorem 3.1(iv) results in item (iv). [

Remark 4.4 (Impossibility to extend D, continuously). Della Pietra et al. originally
considered a more general situation than the present one—they did not require any
constraint qualification, i.e., neither xy nor y, is assumed to belong to the interior of
the domain of f. To tackle this case, they proposed to work with Dy extended
continuously to domf x domf. Unfortunately, it is impossible to carry out this
approach because of the following result, applicable in particular to the negative
entropy:

If dom ¢ X, then the lower semicontinuous hull of Dy is never continuous on
cldomf x cldomf.

Proof (Sketch). Denote the lower semicontinuous hull of D,y by D. Note that
D(x,y)>0, for all x,y in cldom f. Fix yebdry domf and let (y,) be an arbitrary
sequence in int dom f* converging to . Now Dy (y,,»,) = 0, hence

D(y,5) = 0. (14)

On the other hand, fix xeintdom f and an arbitrary sequence (x,) in intdom f
converging to x. Continuity of f on intdom f and the proof of [1, Theorem 3.8(i)]
show that Dr(x,,y,)— + . Hence

(Vxeintdomf) D(x,y) = +o0. (15)

Altogether, (14) and (15) imply that D is not continuous.

It is desirable to obtain duality results without assuming constraint qualifications,
as this occurs quite naturally in some applications. It appears, however, that neither
Della Pietra et al.’s nor the present approach extends to the general setting.

Finally, we point out that Della Pietra et al. considered the closure of S in
Corollary 4.3(iv)—in our setting, this is not necessary: on the one hand, by Bauschke
and Borwein [1, Theorem 3.8(i)] and since x eint dom f', we have Dy (xo,s,) > + 0
for every sequence (s,) in intdom f* converging to a boundary point of domf. On
the other hand, (cIS)\Scbdrydomf, because S = Vf*(Vf(y)+ ran 4*) =

(V)" (Vf(y0) + ran 4*) is closed in intdomf. Altogether, argmin Dy(xg,s) =
seS
arg min Dy(xo, s).
secl$
We conclude by providing a concrete example of Remark 4.4.

Example 4.5 (Impossibility to extend D, continuously). Let X = R and f be the
negative entropy given by
xIn(x) —x if x>0,
fix)=<0 if x=0,
+ 00 if x<O0.
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Then dom f = [0, + o0 is closed, and
Dy(x,y) =xIn(x) —xIn(y) —x+y

for (x,y)e dom Dy = [0, +00[x]0,+ 0.

Now assume to the contrary it were possible to extend Dy continuously.

For x>0 and a>1, let y,(x) := exp(—1/x"). Then for every a>1 and x>0, we
have (x, y,(x))€]0, + oo [%,

Dy (x,yy(x)) = xIn(x) + X'~ — x + s (x), (16)
and
xlir51+(x7y1(x)) = (0,0). (17)

By (16), lim,_ o+ Dy(x, y1(x)) = 1, while lim,_,o+ Dy(x, y2(x)) = 4 00; consequently,
in view of (17), it is impossible to extend D, continuously at (0,0). Hoping for a
separately continuous extension of Dy is also fruitless: let D : [0, + o0 [?=[0,+c0] be
such that D = Dy on 10,400 [* and D(0,0) = 0. Fix x>0. Since lim, o+ Dr(x,y) =

+00, separate continuity results in D(x,0) = +oo. Thus D(-,0) cannot be
continuous at 0.
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